ST THOMAS SCHOOL, INDIRAPURAM WORKSHEET -2 CLASS XI MATHEMATICS

- 1. Write the relation $R = \{(x, x^3): x \text{ is a prime number less than 10}\}$ in roster form. What is its domain and range?
- 2. (a) Find 'n' if ${}^{n}p_{5} = 60 {}^{n-1}p_{3}$ (b) Find 'n' if ${}^{2n}C_{3}$: ${}^{n}C_{2} = 44:3$
- 3. Solve, $\frac{2x-1}{3} \ge \frac{3x-2}{4} \frac{(2-x)}{5}$
- 4. (i) If f(x) = ax + b, where a and b are integers, f(-1) = -5 and f(3) = 3,

then find *a* and *b*.

(ii) If
$$f(x) = \frac{x-1}{x+1}$$
, then show that $f\left(\frac{1}{x}\right) = -f(x)$

- 5. Find *a* if the 17*th* and 18*th* terms of the expansion $(2 + a)^{50}$ are equal.
- 6. The coefficients of three consecutive terms in the expansion of $(1 + a)^n$ are in the ratio 1:7:42. Find *n*
- 7. Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements,
 - a. Do the words start with P
 - b. Do all the vowels always occur together
 - c. Do the vowels never occur together
 - d. Do the words begin with I and end in P
- 8. What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these
 - (a) Four cards are of the same suit (b)Four cards belong to different suits
 - (b) Two are red cards and two are black cards
 - (c) Cards are of the same colour
- 9. If $\tan x = \frac{3}{4}$, $\pi < x < \frac{3\pi}{2}$, find the value of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$.
- 10. Find the square root of (7 24i)
- 11. Prove that $\cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(x \frac{\pi}{3}\right) = \frac{3}{2}$
- 12. Solve : $|x 1| + |x 2| \ge 4$
- 13. Find *a*, *b* and *n* in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.
- 14. Find the coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$
- 15. Show that $\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 8x}}} = 2\cos x$, $0 < x < \frac{\pi}{8}$
- 16. Solve the equation $25x^2 30x + 11 = 0$ by using the general expression for the roots of the quadratic equation.
- 17. Write the complex number in polar form $-3\sqrt{2} + 3\sqrt{2}i$.
- 18. Find the range of function f(x) = |x 3|
- 19. Solve the system of inequalities and represent the solution on the number line

 $3x - 7 \le 5 + x$; $11 - 5x \le 1$

20. Find the coefficient of x^6y^3 the expansion of $(x + 2y)^9$.